import pandas as pd
from matplotlib import pyplot as plt
data = pd.read_csv('data.csv')
ages = data['Age']
dev_salaries = data['All_Devs']
py_salaries = data['Python']
js_salaries = data['JavaScript']
plt.style.use('seaborn')
plt.plot(ages, py_salaries, label='Python')
plt.plot(ages, js_salaries, label='JavaScript')
plt.plot(ages, dev_salaries, color='#444444',
linestyle='--', label='All Devs')
plt.legend()
plt.title('Median Salary (USD) by Age')
plt.xlabel('Ages')
plt.ylabel('Median Salary (USD)')
plt.tight_layout()
plt.show()
#creating subplots
fig, ax = plt.subplots()
print(ax)
fig, ax = plt.subplots(nrows=2,ncols=1)
print(ax)
fig, ax = plt.subplots(nrows=2,ncols=2)
print(ax)
#using rows=2 and ncols=1
fig, (ax1, ax2) = plt.subplots(nrows=2,ncols=1)
print(ax1)
print(ax2)
#different figure different plots
fig, (ax1, ax2) = plt.subplots(nrows=2,ncols=1, sharex=True)
plt.style.use('seaborn')
ax1.plot(ages, dev_salaries, color='#444444',
linestyle='--', label='All Devs')
ax2.plot(ages, py_salaries, label='Python')
ax2.plot(ages, js_salaries, label='JavaScript')
ax1.legend()
ax1.set_title('Median Salary (USD) by Age')
ax1.set_ylabel('Median Salary (USD)')
ax2.legend()
ax2.set_xlabel('Ages')
ax2.set_ylabel('Median Salary (USD)')
plt.tight_layout()
plt.show()
fig1, ax1 = plt.subplots()
fig2, ax2 = plt.subplots()
plt.style.use('seaborn')
ax1.plot(ages, dev_salaries, color='#444444',
linestyle='--', label='All Devs')
ax2.plot(ages, py_salaries, label='Python')
ax2.plot(ages, js_salaries, label='JavaScript')
ax1.legend()
ax1.set_title('Median Salary (USD) by Age')
ax1.set_xlabel('Ages')
ax1.set_ylabel('Median Salary (USD)')
ax2.legend()
ax2.set_title('Median Salary (USD) by Age')
ax2.set_xlabel('Ages')
ax2.set_ylabel('Median Salary (USD)')
plt.tight_layout()
plt.show()
#saving figures
fig1.savefig('fig1.png')
fig2.savefig('fig2.png')